- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Seelig, Georg (2)
-
Shi, Yongsheng (2)
-
Bournique, Elodie (1)
-
Buisson, Rémi (1)
-
Chu, Hsu-Feng (1)
-
Ding, Fangyuan (1)
-
Huang, Lan (1)
-
Jeong, Joshua (1)
-
La_Fleur, Alyssa (1)
-
Liu, Liang (1)
-
Liu, Xiangyang (1)
-
Shi, Xiaoyu (1)
-
Soles, Lindsey V (1)
-
Tian, Lusong (1)
-
Tong, Liang (1)
-
Valdez, Marielle (1)
-
Yin, Christopher (1)
-
Yin, Hong (1)
-
Yoon, Yoseop (1)
-
Yu, Clinton (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding ofcis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses oncis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.more » « less
-
Yoon, Yoseop; Bournique, Elodie; Soles, Lindsey V; Yin, Hong; Chu, Hsu-Feng; Yin, Christopher; Zhuang, Yinyin; Liu, Xiangyang; Liu, Liang; Jeong, Joshua; et al (, Molecular Cell)Free, publicly-accessible full text available February 1, 2026
An official website of the United States government
